Random norming aids analysis of non-linear regression models with sequential informative dose selection
نویسندگان
چکیده
منابع مشابه
Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملevaluating non-linear regression models for use in growth analysis of wheat
growth analysis is a valuable method in the quantitative analysis of crop growth, development and crop production. there are many regression models to describe the sigmoid growth patterns. by considering that, the parameters of non-linear regression models have physiological meanings, they are preferable relation to linear regression models. the aim of this study was to collect and evaluate the...
متن کاملBayesian model selection for logistic regression models with random intercept
Data, collected to model risk of an interesting event, often have a multilevel structure as patients are clustered within larger units, e.g. clinical centers. Risk of the event is usually modeled using a logistic regression model, with a random intercept to control for heterogeneity among clusters. Model specification requires to decide which regressors have a non-negligible effect, and hence, ...
متن کاملAn Analysis of Random Design Linear Regression
The random design setting for linear regression concerns estimators based on a random sample of covariate/response pairs. This work gives explicit bounds on the prediction error for the ordinary least squares estimator and the ridge regression estimator under mild assumptions on the covariate/response distributions. In particular, this work provides sharp results on the “out-of-sample” predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2020
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2019.09.003